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Dstrac:t

In this paper, an invariance principle for lixingales is established
usiD9 a method of proof different from that employed in McLeish (1975, 1977),
WOOldridge (1986) and Gallant (1987).

1. Introduction

In his 1975 and 1977 papers, McLeish established
invariance principles ( IPs) for mixinqales. There has not
been much development in this area since then. It was only
recently that Wooldridqe (1986) considered mixinqales and
developed an IP for functions of dependent variables a topic
oriqinally considered by McLeish (1975)~

A classical procedure used in establishing an IP is to
verify the conditions of a Wiener process. Wooldridqe (1986)
and Gallant (1987), Drogyn (1971), McLeish (1974) and
Herrndorf (1984), to mention a few, provide examples of this
latter procedure. Another approach, qiven in Ethier and Kurtz
(1986) (see AldOUS, 1989), starts with a characterization of
the limit process and shows that the characterization is
asymptotically true for the approximatinq processes.
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In this paper an alternative tool is used to obtain an
asymptotic distribution for mixingales. McLeish (1975)
employed two conditions in the unconditional and conditional
expectation of the squared sums in order to obtain an IP. In
this paper, no assumption on the conditional expectation was
used. This was made possible through the use of Andrews'
(1988) result on correlation.

The organization of this paper is as follows.
2, a result on IP is established using the approach
(1974). A CLT is then obtained as a special case.
are given in section 3.

In Section
of McLeish
The proofs

•

•

2. Main Result

A sequence (Xi' Fi) is an L2-mixingale if there exist
non-negative constant (ci : i~l) and (~m: m~O) such that for
all i ~ 1 and m ~ 0 we have

(a ) II Ei -m Xi) 112 s c i 'I'm and

(b) II Xi - Ei+m xill2 s ci 'I'm+1

We will consider the following random variable

rna]
E Xi' a E [0,1] ,

i=l

where (X1,Fi) is a L2-uniformly integrable L2-mixingale with
mixingale numbers ('I'm) and constants (ci) such that 'I'm < Brne ,

n
e < -1, and lim. E ci <~. It is easily seen tha~ n-1/2Sn is

n->~ i=l .
just a special case of (1) with a = 1, i.e. 0-1/2 Sn = W(l).
Here Weal is a random element in D[O,l}, where 0[0,1] is the
space of right continuous functions with left and right limits
on the closed interval [0,1] •

In the proof we use the following Taylor expansion:

(2 ) . loge (l+x) = x - x2/2 + r (x)

where Irex) I < x3, so that

(3 ) (l+X) eXp[X2/2 + rex)] = exp[x] •
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Therefore, sUbstituting x = itxi in (3), we obtain

(4 )
n
7T (l+itxi) =

1.=1

n
7T exp[itxi - (itxi)2/2 + r{itxi)}

i=l

or

n
= exp[ ~ {(itxi) + t2xi2/2 + r(itxi)}]

i=l .

n n
(5) 7T (l+itxi) exp[.~ {(-t2xi2/2 + r(itxi)}]

i=l 1=1

n
= exp[ ~ itxi].

i=l

Taking the"-e~'ectation of both sides

n n
(6) E 7T (i + itxi) ~ exp[(-t2xi2/2 + r(itxi)]

i=l i=l

n
= E exp[ ~ itxi],

i=l

n
where the RHS is the cf of ~ xi.

i=l

THEOREM 1. Suppose {Xi,Fi} is a unifor~ly

L2-mixingale with 'i'm ~ BmS , e < -1, and lim
n=>co

Suppose further that,

(a) max' In-1/2 Xjl ->p o as n -> co
J

-1
[na] 2

(b) n ~ X' ->p a as n -> co.
j=l J

integrable
n
.~ ci < co.
1=1

t

•

Then, Wn(a) converges weakly to the Wiener process W(a). ~

As noted by McLeich (1974), condition (a) and (b) in
Lemma 1 and Theorem 1 are weaker versions of Billingsley's
(1968, Theorem 19.2) condition. Therefore, Theorem 1 imposes
weaker conditions than those of McLeish (1975, 1977). •
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The condition that 'I'm ~ Bme , e < -1, is not unusual.
Wooldridge (1986), Gallant (1987) and Gallant and White (1988)
also use the same condition with e < -1/2. This seems to be
the trade-off in using the method of McLeish (1974). However,
we believe that this approach can be used to deal with
correlation directly, without need of a mixingale assumptio~.

COROLLARY 1.

Suppose {Xi' Fi} is a uniformly integrable L2-mixingale
such that the conditions of Theorem 1 are satisfied. Then,
n-1~2~n is asymptotically normally distributed with mean ° and
varl.ance 1 •. •

3. Proofs

To, prove Theorem 1, we ,need the following lemmas. First,
we need the result of Gallant (1987) [see also McLeish, 1975,
1977] showing that .'

(7) Pn (A) = P (w: Wn ( .) € A).

is tight .

LEMMA 1. (Gallant, 1987). Let {Xi' Fi} be a uniformly

•

integrable L2-mixinga1e. Suppose that ~m ~ Bme , e < -1/2,
n

and lim h ci <~. Then {Pn} is tight. Furthermore, if
n->~ i=1

Pn(A) = P{w :Wn(.) € A} and if P is a limit distribution of
Pn, P puts mass one in C[O,l].

PROOF. See Gallant (1987).

By the results of Lemma 1, Pn(A) is tight and if P is a
limit distribution of Pn, P puts mass one in 0[0,1]. by
proposition 1.2 of Aldous (1989). Pn =>w P. Therefore, in
this section we only need to establish convergence of finite
dimensional distributions of Pn, since if the finite·
dimensional distributions Pn converge to P and {Pn} is tight,
then Pn =>w P [see also Billingsley, 1968].

The following lemma, Lemma 2, is more general version of
Andrews' (1988) result on the correlation of Xi and Xj. The
lemma plays an important role in proving . the f inite
dimensional limit distribution of (1) •
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LEMMA 2. Let, (X.i' Fi) be an L2-uniformly integrable

L 2- mi xi nga l e . For any 1nteger s ( [0, (i-j)], we have

(8) IEXiXj I s ('1'0 + '1'1) ~+lciCj

+ {'I's+l + '1'0 + ''1'1) 'I'(i-j_s)OiCj

In particular, taking s = (1-j)/2

(g) IEXiXjl s 2('1'0 + '1'1 + 'I'[(i-j)/2]+1) 'I'[(1-j)/2]CiCj.

PROOF:

We follow.Andrews (1988). For any integer

s E [0, i-j], we have

(10) IEXi xjl ~ IEXi (Xj - Ej+SXj)I + IEXiEj+sXjI

= IEXi (Xj = Ej+SXj)I + IEEj+S(XiEj+sXj)I

Using the Cauchy-Schwarz inequality,

IEXiXjI ~ UXiU2Xj - Ej+sxjH2

+ UEj+sXiU2UEj+sXjU 2

Using the definition of mixingale,

•

•

which yeilds (8).

('1'0 + '1'1) 'I'8+1CiCj

+('I'S+l +'1'0 + 'I'1)'I'(i-j-s)ciCj

Taking s = (i-j)/2,

an L2-uniformly integrable
n
1: c i < ClO and- 'I' m ~ B me,

i=1

(12) IEXiXj I s ('1'0 + '1'1) '1'[ i=j) /2 ]+1CiCj

+ ('I'[(i-j)/2]+1 + ~o + ~1)f[(i-j)/2]ciCj.

Since ~r(i-1)/21+1 :S ~[(i-j)/2]' (12) gives (9). This
completea th' pr6of. •

Now we show that Wn(&) has an aSYmptotic normal
distribution. We do this through the method of cf's using the
same technique used McLeish (1974).

LEMMA 3. Suppose {Xi' Fi} is

L2- mi xi nga l e , p ~ 2, such that lim
n->ClO

for some B < ClO and 8 < -1. Define

,.

..



••

•

(13)

If

(a)

(b)

n
~ (1 + n-1/2itxi).

i=l

n 2
n-1 E Xj ->p a as n-oee

j=l

37

..

are satisfied, then Tn is uniformly integrable and

(14) lim E Tn = 1.
n=>ClO

PROOF:

Performing the mUltiplica~ion in (3), we have

• (15)
n
~ (1 + n-1/2itXi) - 1

i=l
n

= n-1/ 2 E itXl - n-1
i=l

n
E t2XiX)' + '0{n1+6)

j>i
i=l

Therefore,

•

•

n n
~ n-1/ 2i t . E IEXil + n-1t 2 .E.IEXiXjl + 0(n1+6 )

1=1 »1
i=l
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Since EXi = 0, the first expression of the RHS is O.
the second expression of the ~S, using Lemma 2,

n
(17) E IEXiXjl

j>i
i=1

For

• t

2 [n/2]
S 2 sup UXkU2 E. ('0 +'1+'[(j-i)/2]) '[j-i)/2]

k~1 j=1
i=1

Approximating the sum by its integral, and using assumption
'u S B ue,

. Since e < -1, the last inequality converges in
probability to 0 as n ->~. Therefore, (18) converges to 0 as
n -> ~ and, hence, (14) holds. The uniform integrability of
Tn follows from the uniform integrability of {Xi 2} and the
fact that E Tn is bounded by 1. Q

LEMMA 4. (McLeish, 1974). Let

(18)

(19)
rna]

Tn =" (1 + itxi)
i=1

•

•
Suppose for all real t,

(a)

(b)

(c)

ETn -> 1,

{Tn} is uniformly inte9~sble,

-1 [na] 2 .
n E Xi ->p a, and

i=1
•
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n
Then Sn = E Xi =>w N(O,l)

i=l

PROOF: See McLeish (1974). •

Suppose further that,•

LEMMA 5.

L2-mixingale

Suppose {Xi,Fi} is a

with ~m < Bm9 , 9 < -1,

uniformly integrable
n '

and lim E ci < "00.

n=>co i=l

(a) max n-1 / 2 IXjl -> o as n -> CD

j~1
P

"

-1
rna] 2

(b) n E Xj ->p a as n-> CD.

.. j=l

Then, W~(a) is asymptotically nomrally distributed with mean 0
and variance a.

• PROOF: Note that Lemma 3 still holds if n is replaced by
rna]. Therefore, defining

rna]
~ (1 + n-1/2itXi)

i=l

we have E Tn(a) -> 1 and Tn(a) is uniformly integrable. Now
we are led to verify the conditions of Lemma 4. However, the
remaining conditions of Lemma 4 are just the assumptions (a)
and (b) of Lemma 5. And, therefore, Wn(a) converges to
N(O,a). •

• LEMMA 6. Suppose {Xi' Fi} is a uniformly integrable
n

L2-mixingale with ~m S Bm9, 9 < -1, and lim E ci < 00.

n=>oo i=l
Suppose further that, ,

..

(a) maxj n-1/2 Xj ->p 0 as n -> CID

-1
rna] 2

(b) n E Xj -> a as n -> co.
j=l P

Then, wn(a) has aSYmptotic independent increments •
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PROOF: ..

Define

(20)
rna]

W (1 + n-1/~its1Xi)
i=l

(22) •
rna]

+ E r(n-1/2its
1Xi)]'

i=l

where r(.) is the reminder defined as in (2), ..

(23)

(24)

[nc]
= W (1 + n-1/2its

2Xi)
i=[nb]

In(b,c) = exp[it(s2(Wn(c)-Wn(b»)] ..

distribution with mean

Following McLeish
s2(Wn(c) - Wn(b» will

to show: •

[nc] 2 2
= eXp[-(1/2)t2(n-1 E s2Xi)

i=[nb]+l

[nc]
+ E r(n-1/2its

2Xi)].
i=[nb]+l

(1974), in order that (slWn(a). +
have an asymptotically normal

. 2 2
o and variance sla + s2(c-b), we have

(25)

(26) ETn(a)Tn(b,c) -> 1

(27) Tn(a)Tn(b,c) is uniformly integrable

(28) Tn(a)Tn(b,c)(Un(a)Un(b,c)

- eXp[-(1/2)t2 ( s 18 + s2(c-b»] -> O.
L

1

..
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To prove (26) and (27), note that

[nc]
:E

j=[nb]+1

•

,II

[nc]
:E its2xi

i=[nb]+1

rna]
- n-1 t 2 :E

i=1

[nc] 2
- n-1 :E t2S2XiXj

i=[nb]+1
j>1

S1S2Xi Xj + 0(n1+6 )]

...

•

~ n-1/2[n~] its11EXii + n-1 [n~] t2s~ IEXiXjl
i=1 i=1

j>1

[nc] [nc] 2
+ n-1/2 :E its11EXii + n-1 :E t2s21EXiXjl

i=[nb]+1 i=[nb]+1
j>i

rna]
+ n-1 t 2 :E

i=1

. n-1/ 2S1nce EXi = 0,

are O. Now,

rna] [nc]
:E its11EXii and n-1/2 :E its21EXii

i=1 i=[nb]

•

•

(a) To show:

rna] 2
n-1 :E t 2S 1 IEXiXj I -> 0 .

i=1
j>1
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Note that from Lemma 2.wlth s = (i-j)/2,

rna]
(30) E IEXiXjl

j>i
i=1

2 [[na ]/2], ' . [[na]/2] 2
s 2 sup IIxkll2 n ( E ('l'0+'l'1)'l'u +. t 'lu).

k~1 u=O 0=0

By the assumption, we have 'l'u . ~ B u8 • Therefore, using the
integral approximation to the sum, we obtain

[[na]/2] , .
(31) E 'l'u SB'(n/2)9+1

u=O

and

[[na]/2 2
E. 'l'u S Bn (n/2)28+1

u=O

where B' == B (1+9)-1 and Bn = B (1+28)-1. Substituting (31)
and (32) in (30),

•

•

•

(33)
-1 t 2 rna] .

n . E \ EXiX)"I
j>1
i=1.

+ 2 t 2

,

•

(34)

since 9 < -1, the last inequality converges to 0 as
n -> 00.

(b) To show:

[nc] 2
n-1 E t 2s 21EXiXj J -> 0 •

i=[nb]+1
j>1

•
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Note that, since IEXiXj I ~ 0,

[~] [~]

(35) E IEXiXj I ~ E IEXiXjl
i=[nb]+l i=l
j>i j>i

which goes to 0 with th~ s~me argument as ~n (30) - (33) of
the proof in. (a) by replacin~ [na] by [ nc ] •

(c) To ,show:

[nc]
E ~ls2lEXiXjl -> o.

j=[nb]+l

Note, that

t (36)
[na] [nc ]
4 E IEx-x-1 s_. 1 J

1=1 J=[nb]+l

[nc]
E

i=l
j>l

•
[na} [nc]
E E sls21EXiXjl also converges

i=l j=[nb]+l

to 0 by simil~r arguments as in (b).

Using the results of (a)-(c), -1n
[na]

E
i=l
j>i

converge

•

•

[nc] 2 [na] [nc]
E t2s2lEXiXjl, n-1t 2 E E slS21EXiXjl

i=[nb] I i=l j=[nb]
j>l

to o. This implies that E(Tn(a)Tn(b,c) -> as n -> ~.

The uniform integrability of {Tn(a)Tn(b,c) follows from
2

the uniform integrability of {Xi} and the fact that
E(Tn(a)Tn(b,c) is bounded by 1 •
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To show (28), note that

•

(37)
rna] ,
E r(n-1/2its1Xi) s

i=1

rna]
S E I max n-1/2xil lits1 1 In-1/2its1xiI2

i=1

which converges in probability to 0 by (a) and (b).
Similarly,

[nc] , [nc]
(38) . E r(n~1/2its2Xi) S E In-1/2its

2xiI
3

1=[nb]+1 i=[nb]+1

[nc]
S E Imax n-1/2xil Iits2 I In-1/2its

2xiI
2

i=[nb]+l

converges in probability 'to 0 by (a) and (b). Equations (37),
(38) and assumption (b) imply that

•

· f

(39)

•

rna]
x exp[ E r(n-1/2its1Xi)]

i=1

[nc]
x exp[ E r(n-1/2its

1Xi)]
i=[nb]+1

converges in probability to O. The uniform integrability of
22'

Tn(a)Tn(b,c)(Un(a)U (b,c) - eXp[-(1/2)t2(S1a + s2(c-b»] =
(In(a)In(b,c) - TnPa)Tn(b,C)eXp[-eXP[-(1/2)t

2(S1a + s2(c-b»]
fOllows from the boundedness of exp[itx] and ETn(a)Tn(b,c).
Therefore,

•

•
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0' Having proven (26), (27), (28), we have completed the proof of
Lemma 6.

PROOF OF TIIEORBII 1. By Lemma 5 and 6 , Wn(0 ) has 1 imiting
normal distribution weal· having mean 0 and variance a.
Furthermore, for 0 = 81 < bi ~ a2 < b2 ~ ••• < ak ~ ~ = 1,

•

•

•

•

{Wn(b1)-Wn(a1)' Wn(b2)-Wn(a2)' ••• , Wn(bk)-Wn(ak)}

will also converge to the corresponding finite dimensional
limit

(W(b1)-W(81)' W(b2)-.w(a2)' ••• , W(bk)-W(ak)}

of an uncorrelated k-dimensional normal distribution. Wn(a)
is tight, by Lemma 1. Therefore, Wn (8) converges weakly to
the corresponding limit distribution. This limit distribution
is the Wiener process W(a), using the result of Billingsley
(1968), •
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